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Abstract— By analyzing people’s contact patterns over time, it 

is possible to build efficient delay tolerant networking (DTN) 

algorithms and derive important data for parameterizing and 

calibrating epidemiological models.  Significant research has 

been performed in the automated acquisition of contact 

patterns using mobile devices such as Zigbee motes or 

Bluetooth-enabled cellular phones.  However, the limited 

number of studies described to date do not capture the breadth 

of human experience or specifically include the acquisition of 

health related information.  In this paper we present Flunet, a 

mobile contact-tracking network deployed in a Canadian 

university environment during flu season.  Flunet tracked 

contact patterns of 36 participants and their proximity to 11 

stationary nodes using MicaZ motes over a period of three 

months.  Participants filled out weekly surveys on their state of 

health.  This study is distinct from others because we 

incorporate health information and the impact of sub-zero 

temperatures on mobility patterns.  This paper presents a 

preliminary analysis of the data set, primarily from a DTN 

perspective.  We present fundamental attributes of the dataset, 

the efficiency of routing for single pass and flooding-based 

algorithms and a preliminary look at the relationship between 
network characteristics and health status.   

Keywords-component; Sensor Networks, Contact 

Measurement, Delay Tolerant Network, Epidemiological 
Modeling 

I.  INTRODUCTION 

Automated contact tracing between human agents has 
direct applications to health and networking research. In 
networking research, contact traces can provide detailed 
maps of contact duration and inter-contact separation, which 
can be directly applied to the design and validation of delay 
tolerant network routing algorithms [1].  In health research, 
contact patterns provide insight into critical factors 
underlying the spread of contagions, such as for sexually 
transmitted infections [2] like HIV, and for airborne illnesses 
such as influenza or tuberculosis [3].  The resulting network 
structure and dynamics can be used directly in agent-based 
and network models or can be processed to provide mixing 
matrices for population level models. 

Several attempts have been made to derive contact 
patterns in human environments.  Traditional contact tracing 
has relied on self-report, which is labor-intensive and time-
consuming [4]. Individuals subject to contact tracing are 

sometimes reluctant to report contacts for reasons of 
confidentiality.  Even given a willingness to offer contact 
histories, individuals can have limited ability to recall the 
occurrence and timing of a contact, particularly for those of 
shorter duration.  Partly as a result of these limitations, 
researchers working with self-report contact data have found 
that the incorporation of geographic place into social network 
analysis can offer significant epidemiological insight [3]. 

Data sets, particularly those publicly available on the 
CRAWDAD repository, have been obtained from automated 
contact tracing, either directly using Wi-Fi, Bluetooth or 
Zigbee devices, or indirectly using time-stamped GPS 
coordinates.  Example datasets include university students 
and staff [5], conference attendees [6], university wireless 
usage [7], rollerblade tours [8] and GPS traces at theme parks 
[9].  Researchers have also attempted to use secondary 
measures to estimate contact patterns by inferring them from 
published or recorded schedules.  Examples include student 
attendance in classes based on anonymized schedules [10], 
vehicular networks such from bus schedules [11], or subway 
transit records [12]. 

While these datasets have enhanced our understanding of 
inter-human contact patterns and allowed the construction of 
more realistic synthetic algorithms for creating mobility 
models [9], they still do not capture the breadth of human 
endeavor, or include medical data which would make the 
contact records more applicable to epidemiological 
modeling.  To fill this gap we present Flunet, a contact 
tracing experiment conducted at the University of 
Saskatchewan.  

Flunet tracked 36 participants and 11 fixed nodes over 
the course of three months during a Canadian winter.  
Participants provided health information through weekly 
surveys, which reported symptoms characteristic of 
influenza-like illnesses.  Flunet is distinct from other data 
sources for the following reasons: 

 Medical Data: We collected health data from each of 
the participants in weekly surveys, allowing us to 
examine changes in contact dynamics for sick and 
healthy individuals. 

 Duration: We have collected data for an entire flu 
season, encompassing over 1000 person-days of 
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records, which is significantly more than other 
Zigbee-based experiments. 

 Temperature: The mean temperature during our 
experiment was -12º C [13]. Such low temperatures 
both contribute to mobility patterns and facilitate the 
spread of influenza. 

This paper presents a preliminary analysis of the dataset 
from both a DTN routing and epidemiological perspective.  
Section 2 describes our experimental setup.  Section 3A 
presents a preliminary contact data analysis, section 3B 
verifies that classic DTN routing algorithms function as 
expected, and section 3C examines the health information 
provided in the participant surveys.  A brief discussion is 
provided in section 4, future work in section 5 and 
conclusions in section 6. 

II. EXPERIMENT SETUP 

We were interested in the contacts between participants, 
the amount of time they spend at public places and how this 
might correlate with health conditions. To collect this data, 
we used contact tracing using MicaZ motes and weekly 
health surveys. 

A. Contact Measurement 

We selected 36 participants and asked them to carry a 
wireless module (MicaZ by Crossbow®) for 3 months, 
starting Nov. 9th, 2009 and ending Feb. 9th 2010. The 
participants were from 7 graduate labs in the Computer 
Science Department, departmental staff and undergraduate 
students. We also placed 11 stationary nodes in public places 
through the campus to measure the amount of time each 
person spent in specific public areas. Stationary locations 
were chosen by experimenters in high traffic, public 
locations. 

Out of 11 stationary nodes, 3 were connected to a 
networked PC and acted as data sinks. The mobile nodes 
buffered the recorded contact information and offloaded the 
buffered data accumulated since the last offload time. To 
collect all the data at a central location, these base stations 
were connected to a central MySQL database which 
periodically uploaded collected data from the network to the 
main database. Contact with a base station triggered clock 
synchronization by setting the mobile node‟s internal clock 
to the value received from the server. When two mobile 
nodes established a new contact, they synchronize their 
clocks to the node which had more recently visited the 
server. This algorithm caused the synchronized time to 
propagate through the network, mitigating clock drift in 
mobile nodes with infrequent server contact. Half of the 
mobile nodes were equipped with MTS310 sensor boards to 
periodically measure the temperature of their surroundings. 

To probe adjacent nodes, each node broadcasts a 
“HELLO” message every 30 seconds (4-second interval for 
stationary nodes) with random drift of +/-2 s to prevent 
packet collision. If a node currently in contact failed to 
receive 4 consecutive HELLO messages from its partner, it 
labeled the partner as departed and adds a new contact record 
to its internal buffer. Each contact record includes: control 

flags, adjacent node ID, contact start time, contact end time, 
distance (discretized to „Close‟, „Medium‟, and „Far‟ based 
on received signal strength indicator (RSSI) value), and 
temperature (if applicable). 

B. Surveys 

Health information was collected via weekly surveys, 
which also requested participants estimate their total contact 
time with other members of the study to provide data on the 
difference between automated and self reported data 
collection. Participants were also asked to fill a one-time 
demographic/background survey which included questions 
on demographic variables, average amount of time spent 
with people and on campus, flu shot and H1N1 vaccination 
information, and their attitudes to the wireless module. 

C. Maintaining the Integrity of the Specifications 

The wireless module failures can be divided into two 
main categories: technical problems and human carelessness. 
The primary technical failure mode was a failure in the 
MicaZ receiver amplifier. The node could not receive 
HELLO packets from other nodes, but other nodes could 
record the faulty node‟s existence. We suspect this problem 
was due to electrostatic discharge (ESD) damage to the 
receiving amplifier, due to the prototype design of MicaZ 
motes and the dry, cold conditions which dominate 
Saskatchewan winters. Thirty-two nodes experienced 
receiver failure during the study. Defective nodes were 
replaced after failure detection. We have mitigated the 
impact of this failure node by defining contact between a pair 
of nodes as the union of their contact records.  Battery failure 
or displacement, sensor board displacement caused by 
shaking the module, and storage memory failure were other 
technical problems which occurred rarely during the study. 

Human error was dominated by participants forgetting to 
carry the module, and forgetting to replace the battery 
periodically. When the participant forgot to carry the module, 
either the module was left on or off. In the former case the 
module recorded additional erroneous data and in the latter 
case we lost potential contact information. We tried to 
minimize compliance issues by sending reminders, 
mentioning in the weekly surveys, and directly reminding the 
more egregious offenders. During the study we observed that 
as time progresses, people cared less about the mote, and 
more often forgot to change the battery or to keep the device 
on. Voluntarily turning the node off, and forgetting to switch 
the device on after turning it off are other examples of human 
carelessness which rarely affected data collection. 

D. Simulation 

We can consider the dataset as a delay tolerant network 
(DTN) with semi-predictable connectivity. To analyze data 
from this point of view, we implemented a DTN in Network 
Simulator 3 (ns-3) using collected data from all 47 nodes 
(mobile and stationary). We applied two fundamental DTN 
routing algorithms on the simulated network: 1) Direct 
Message Passing to measure the upper bound of end-to-end 
delivery time and the lower bound of energy consumption, 
and 2) Epidemic Routing (Flooding) [14] to measure the 
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lower bound of delivery time and the upper bound of energy 
consumption. 

In simulation, we discretized the time into 30-second 
time slots, and computed the connectivity pattern at each 
time slot using the dataset. The result for each node was 
imported as its contact pattern during the simulation. For 
both algorithms, we generated 12,500 packets in the network 
during the simulation, using a uniform random variable with 
0.1% generation rate; therefore each node generated 
approximately 3 messages per day. Buffer Size was set to 
1000 packets for all the experiments and no Packet TTL was 
specified. The packet size was fixed to 29 bytes (the default 
packet size in TOS).  The Flooding algorithm did not employ 
any anti-packet methods [15]. The carrier drops the packet as 
soon as delivery to the destination, but might receive the 
packet again in the future from other nodes. 

III. RESULTS 
Participants in this study consist of 75% males and 25% 

females, while 47% of them were in contact with other 
participants just on campus, and 53% were in contact off 
campus as well. 14% of the participants received a regular 
flu shot, and 39% of them had H1N1 vaccination. In 
addition, 83% of participants never smoke, while 6% smoke 
occasionally, and 11% smoke every day. 

A. Dataset Characteristics 

For the first set of results from the collected dataset, we 
focused on the data and its characteristics. The average 
duration of contacts at different hours of the day is 
interesting from DTN perspective. As shown in Fig. 1, 
contacts which happened in the morning between 7 AM to 9 
AM are longer than other times of the day and the contact 
durations get shorter during afternoon. This can be explained 
by considering the effect of contacts between staff members 
during working hours at their offices, while the shorter 
contacts happen in afternoon between graduate students. 
During midnight to 6 AM, the number of contacts is much 
smaller and at shorter duration. 

Fig. 2 shows the complementary cumulative distribution 
function (CCDF) of contact duration. In addition to CCDF 
for all the collected data, we also removed contact durations 
more than 10 hours (0.03% of total reported contacts) from 
dataset because we assumed contact of this duration was due 
to motes abandoned near each other. Removing this section 
of data shows a considerable difference in the result plot. 
Actual data of this duration would have required that 
participants use the washroom together. Although the graph 
shows a small fluctuation between 300 and 400 minutes, it is 
difficult to separate the cause of the departure from the curve, 
because while it is likely due to abandoned nodes behaving 
like stationary nodes, it could also be caused by people 
changing their behavior when in continuous proximity. 

Fig. 3 shows contact duration and number of reported 
contacts for all mobile nodes during the experiment. This 
graph is plotted for „Close‟, „Medium‟, and „Total‟ reported 
contacts, based on the RSSI value. All of the contact 
proximities show the same trend in data: there are fewer 
nodes which  have  long  contact duration and a large number 

 

Figure 1.  Average contact duration at different hours of the day 

 
Figure 2.  Complementary Cumulative Distribution Function (CCDF) of 

contact duration 

 
Figure 3.  'Close', 'Medium', and 'Total' contact duration (Left) and reported 

contacts (right) for mobile nodes 

of reported contacts, while there are many nodes with small 
to medium contact duration and fewer contact records. 

Fig. 4 shows duration of reported contacts from two 
selected participants with all other nodes in network, sorted 
by duration of contact. Out of 36 participants, 3 of the plots 
were similar to „Sample 2‟, which is indicative of people 
with high centrality. Even though those people do not have 
extended contact durations with other people, they have seen 
all other participants at least once during the study. The plot 
for the other 33 people was similar to „Sample 1‟ which 
shows  a  power  law  behavior  in  their  contact pattern [16]. 
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Figure 4.  Contact duration between two sample participants and other nodes 
during the experiment 

 
Figure 5.  Packet delivery ratio for Flooding and Direct Pass algorithms 

 

This is reasonable specifically for people who worked 
exclusively in a lab, as they spent a considerable amount of 
time close to their lab mates, but they did not have contacts 
with as many other people in the study. 

B. DTN Results 

The collected data can represent a DTN network with 
unpredictable and opportunistic connectivity [1]. We used 
collected data for all 47 nodes to simulate a DTN network 
and implemented two basic routing algorithms: Direct Pass, 
and Flooding. Fig. 5 shows packet delivery ratio for both 
algorithms, with infinite TTL and buffer size equal to 1000 
packets. With this buffer capacity, Direct Pass does not face 
buffer overflow, while in Flooding each node faces buffer 
overflow during the simulation. The buffer overflow ratio in 
flooding depends on the popularity of the node in the 
network. If the node has large number of contacts, it receives 
more packets and fills its buffer faster, and therefore 
potentially enters buffer overflow.  If the node has fewer 
contacts, it receives fewer packets, and faces limited buffer 
overflow. 

As it can be seen in Fig. 5, delivery ratio in Direct Pass 
constantly increases with time, while delivery ratio in 
Flooding does  not  have  a  notable  change after two weeks, 

 

Figure 6.  Delivery ratio at different hours of day 

 
Figure 7.  End-to-End delivery time histogram for Direct Pass and Flooding 

algorithms 

where it reaches to a saturation point at less than 100% 
delivery. This non-ideal delivery is partly due to the packets 
which are generated in the nodes near the end of simulation, 
when insufficient time remains for delivery, and partially due 
to dropped packets caused by buffer overflow. 

Because the dataset represents a human environment, we 
suspected that most of the message deliveries happened 
during the day. Fig. 6 validates this hypothesis. As shown in 
this figure, the number of messages delivered between 
Midnight and 6 AM is negligible. Packet delivery increases 
at 7 AM and reaches its peak at 2 PM, and it decreases 
during afternoon and evening. This peak can change in 
different human environments. In this study, majority of 
participants were students with their own work schedules, 
and the minority were staff with fixed working hours. 
However, these schedules tended to overlap in the afternoon, 
increasing the delivery probability. 

Fig. 7 shows histogram for end-to-end delivery time for 
the flooding and direct pass algorithms, discretized using 8 
minute bins. As the histogram shows, a portion of generated 
packets can be delivered quickly, likely because the source 
and destination are in close proximity (e.g. the same 
laboratory) when the packet is generated, or one of the nodes 
is highly connected. The chance of delivering the packet 
decreases with time, and in Flooding histogram it approaches 
zero after two weeks.  The number of delivered packets at 
each  bin  of  the Direct Pass plot is smaller than its  Flooding  
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Figure 8.  Total sick days for each participant 

 
Figure 9. Betweenness vs. Total sick days 

 
counterpart, but falls more gradually leaving a non-zero 
chance of delivery even after 2 weeks.  This difference is as 
expected, because Flooding provides faster throughput than 
Direct Pass, but at the risk of buffer overflow. 

C. Dataset and Health 

We recorded information on participants‟ health during 
the study using weekly surveys. Compliance with the survey 
was sporadic, and we were forced to remove 5 participants 
due to insufficient data.  Fig. 8 shows total number of sick 
days reported by each participant during the study. This data 
can be used to analyze the relation between peoples‟ contact 
patterns and their likelihood of being ill. We felt that 
participants were logically grouped into those who did not 
report a sick day, those that did reported less than 5 sick 
days, and those with greater than 5 sick days. While we 
recognize that processes of viral infection in humans are 
incompletely captured with aggregate statistics, we sought to 
determine if there was any correlation between the report of 
illness and participants‟ contact patterns in an attempt to 
validate the automated approach and to inform both future 
analysis of this data and the collection of new data.  
Descriptive statistics are shown in Table I. 

While there were differences in contact duration for those 
that reported less than 5 days of illness and those with 5 or 
more days, there are no apparent differences between those 
who reported more than 5 sick days and those who reported 
none. While this may indicate some kind of correlation in our  

TABLE I.  DESCRIPTIVE STATISTICS ABOUT PARTICIPANTS WITH 

DIFFERENT SICK DAYS 

 Never < 5 Days ≥ 5 Days 

No. of People 12 9 10 

Mean Duration – Close (Hour) 1.42 1.08 1.42 

Mean Duration – Any (Hour) 3.23 2.52 3.19 

Mean Contacts 36.37 29.18 32.2 

Male/Female 75%/25% 89%/11% 60%/40% 

Flushot 0% 11% 10% 

Mean Age 29.8 28.7 31.2 

Std Dev Age 7.3 5.6 10.9 

 

 
Figure 10:  Time required to infect a given percentage of the population 

(left) and percentage of trials where at least the given percentage of the 

population was infected (right) 

 

dataset, further research will be required to tease out the 
underlying causes, or eliminate the correlation.  We suspect 
that some participants who reported no sick days did not fill 
out the surveys properly, underreporting their sickness 
causing a misclassification.  However, these human factor 
issues can be difficult to isolate in data, and may require 
additional experiments to resolve.  The trends noted are also 
influenced by important confounders, as older participants 
were more strongly represented in the more than 5 days 
category, and older participants in the study tended to be 
office staff, with consistent and prolonged contact patterns 
rather than students with more sporadic schedules. 

To further visualize if sick days was correlated to 
network structure we plotted betweenness versus reported 
sick days as a scatter plot of participants in Fig. 9.  Like the 
table, the results are ambiguous. More detailed 
epidemiological study will be required to further investigate 
this finding to determine if it is an effect or artifact. 

We wanted to make a preliminary investigation of the 
utility of the dataset for agent-based epidemiological 
modeling.  We assumed the virus spread from an infected 
node to an adjacent node, if two nodes stay in contact for at 
least 5 minutes with a “Close” categorization of RSSI value. 
This represents a 100% infection rate if the conditions are 
met, characteristic of a worst-case virulence human pathogen 
or a novel computer virus [17].  A packet representing the 
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virus was introduced into the system, and its propagation 
monitored.  Fig. 10 shows the result of 9500 trials at different 
simulation times. Some trials infected the whole community, 
but many infected a small fraction, if the primary infection 
point was poorly connected or the packet was generated near 
the end of simulation.  The time required to infect a given 
percentage of the population is shown on the left axis, and 
the number of trials where that percentage was infected is 
shown on the right axis.  

IV. DISCUSSION 

We have presented a new dataset incorporating 
automated contact monitoring using MicaZ motes and health 
survey data.  Our contact pattern measures and DTN 
performance are similar to those in previously reported 
analyses [5].  We had expected to see some distinctions 
between the contact patterns we observed, and the contact 
patterns observed in other studies due to the inclement 
weather typical of winters in Saskatchewan.  However, our 
results are similar to those in studies like Reality Mining [5].  
We expect that this similarity is due to work habits of North 
American Computer Science and Engineering graduate 
students, who spend the vast majority of their walking hours 
in indoor laboratory environments regardless of the weather.  
However, we are hopeful that the weather will aid in future 
analysis of the role of the stationary nodes because the winter 
weather strongly motivates students to utilize indoor routes 
between buildings, passing several nodes in public areas. 

Although our preliminary analysis of the combined 
contact and medical data hinted at correlations, the simple 
analysis tools we employed were unable to unearth any 
conclusive findings.  However, we have identified potential 
interactions, meriting additional research.  The analysis of 
the data, and of confounders such as age, employment status 
and location caused us to note several potential pitfalls of 
directly mapping contact patterns to health data. 

V. FUTURE WORK 

This paper reports a preliminary analysis of our dataset, 
which itself results from a pilot exploration of the collection 
of simultaneous health and contact data.  Our future work 
will focus on three areas: employing the data we have 
collected for the development and evaluation of DTN routing 
algorithms, analyzing our data from an epidemiological 
perspective to gain insight into the potential for automated 
data collection to contribute to infectious disease modeling, 
and as a starting point for longer and more detailed future 
studies employing more compelling, robust and 
comprehensive wireless sensor systems.  

VI. CONCLUSION 

We have presented the preliminary analysis of a new 
study conducted at the University of Saskatchewan covering 
36 participants over a single flu season.  Our data offers 
information both on contact patterns and analysis of 
participant health.  We have found the general character of 
the data obtained in good agreement with similar studies 
from the point of view of the contact patterns themselves and 

the behavior of classic DTN routing algorithms using the 
aforementioned contact data.  Our preliminary analysis of the 
health data suggests possible associations between contact 
rates and risk of infection, but significant additional work 
will be required to validate this finding with statistical rigor.  
We plan to follow this research with more analysis, new 
algorithms and additional studies.  
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